Nonstationary Gaussian processes in wavelet domain: synthesis, estimation, and significance testing.

نویسندگان

  • D Maraun
  • J Kurths
  • M Holschneider
چکیده

We propose an equivalence class of nonstationary Gaussian stochastic processes defined in the wavelet domain. These processes are characterized by means of wavelet multipliers and exhibit well-defined time-dependent spectral properties. They allow one to generate realizations of any wavelet spectrum. Based on this framework, we study the estimation of continuous wavelet spectra, i.e., we calculate variance and bias of arbitrary estimated continuous wavelet spectra. Finally, we develop an areawise significance test for continuous wavelet spectra to overcome the difficulties of multiple testing; it uses basic properties of continuous wavelet transform to decide whether a pointwise significant result is a real feature of the process or indistinguishable from typical stochastic fluctuations. This test is compared to the conventional one in terms of sensitivity and specificity. A software package for continuous wavelet spectral analysis and synthesis is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Wavelets and statistical analysis of functional magnetic resonance images of the human brain.

Wavelets provide an orthonormal basis for multiresolution analysis and decorrelation or 'whitening' of nonstationary time series and spatial processes. Wavelets are particularly well suited to analysis of biological signals and images, such as human brain imaging data, which often have fractal or scale-invariant properties. We briefly define some key properties of the discrete wavelet transform...

متن کامل

Wavelets and functional magnetic resonance imaging of the human brain.

The discrete wavelet transform (DWT) is widely used for multiresolution analysis and decorrelation or "whitening" of nonstationary time series and spatial processes. Wavelets are naturally appropriate for analysis of biological data, such as functional magnetic resonance images of the human brain, which often demonstrate scale invariant or fractal properties. We provide a brief formal introduct...

متن کامل

Wavelet-Based Estimation Procedures for Seasonal Long-Memory Models

Motivation • Seasonal long memory is gaining attention as a time series model in econometrics and the physical sciences. { Arteche and Robinson (2000) proposed log-periodogram regression and Gaussian semi-parametric estimation for seasonal long-memory processes. • The discrete wavelet transform (DWT) is a useful alternative to the discrete Fourier transform for the analysis and synthesis of lon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007